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Abstract. The Fermi function is a useful model in many branches of physics, from statistical
mechanics to nuclear physics to astrophysics. ThesymmetrizedFermi function has the advantage
that with it, many useful integrals can be evaluatedexactly. Strangely, this does not seem to be
well known in the physics community.

1. Introduction

The Fermi function

F((r − R)/d) = 1

1+ e(r−R)/d
(1)

is used in many areas of physics. Recently we found it useful in a study of quantum dots.
In statistical mechanics it describes the occupation of states by fermions, withR = EF
and d = kBT . In nuclear physics, it is commonly used as a shape for the radial density
distribution, or for the single-nucleon potential-energy function, withR the half-density
radius andd the surface-thickness parameter. In this context it is usually called the Woods–
Saxon potential. It is a convenient function with a more or less flat interior and a narrow
surface. There has always been some mild embarrassment concerning the fact that it puts
a cusp at the centre of the nucleus,r = 0, but because in most cases the radiusR is large
compared to the surface thicknessd, this cusp is ignored.

Recently it came to our attention that a perfectly reasonable alternative function exists
that removes this embarrassment: it is the symmetrized Fermi function

ρS(r) = sinh(R/d)

cosh(r/d)+ cosh(R/d)
= ρS(r/d, R/d) (2)

which was used by Buck and Pilt [1] as the shape of a nuclear potential. They ascribed
it to Burov et al [2], who in turn cite Eldyshevet al [3]. Grammaticos [4] appears to
have independently discovered it in variational calculations on the density distribution in
nuclei. Behrens and B̈uhring [5] used it as one of their models for computingβ-decay
matrix elements; another recent reference is Grypeoset al [6]. Thus, the symmetrized
Fermi function has been known to some experts, but the least one can say is that it is not
‘well known’ generally. None of the text books on nuclear physics refers to it.

WhenR � d, the symmetrized function is indistinguishable on a graph from the usual
Fermi function, so the cusp seems more a difficulty of principle than a practical matter.
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However, ifR andd are comparable, this is not at all so. In any case, it is an advantage
to deal with a function for which one can derive analytic results.

The model appears to have been invented by Eldyshevet al [3], to describe the nuclear-
charge distribution. They gave theexact form factor

G(q) = 4π

Nq

∫ ∞
0

sin(qr)ρS(r)r dr

= 3

q3

πqd

sinhπqd

[
πqd

tanhπqd
sin(qR)− qR cos(qR)

]
1

R(R2+ π2d2)
(3)

where 1/N is the normalization factor that gives a volume integral of unity:

N = 4π

3
R(R2+ π2d2). (4)

These results can be checked easily by contour-integral methods (see section 4). By
expandingG(q) in powers ofq2 one can extract the values of all the even moments of the
charge distribution. One wonders why this has not been common knowledge up until now?
Further, one wonders what is the relation between these exact results and the well known
Sommerfeld lemma [7] which has traditionally been used to evaluate moments of the Fermi
function?

The purpose of this note is to explore these questions. It is convenient to start with
a paper of Blankenbecler [8], who derived a clever operator expression for integrals over
the Fermi function. We see that when this is applied to the symmetrized Fermi function
equation (2), Blankenbecler’s derivation becomes exact. Otherwise, he had dropped a term
which generates a complicated series of small corrections, that were explored at length
by Maximon and Schrack [9]. In Elton’s famous book on nuclear sizes [10] the same
corrections were dropped. Therefore the ‘approximate’ results obtained by many authors
for the usual Fermi function are in fact exact results for the symmetrized Fermi function.
As a result, many calculations have actually used the latter, without knowing what they
were doing.

2. Blankenbecler’s method

First we check that equation (2) can be written as a symmetrized Fermi function.

ρS(r) = 1

1+ e(r−R)/d
+ 1

1+ e−(r+R)/d
− 1

= 1

1+ e(r−R)/d
− 1

1+ e(r+R)/d

= sinh(R/d)

cosh(r/d)+ cosh(R/d)
. (5)

Note that whenr = 0, the value is tanh(R/2d), while whenr = R, it is 0.5 tanh(R/d).
The ratio is

ρS(R)

ρS(0)
= 1

1+ tanh2(R/2d)
(6)

which is close to 0.5 whenR � 2d. HenceR is the ‘half-density radius’ at least as much
as it is for the usual Fermi function. Being an even function ofr, ρS(r) has zero slope at
the origin, and therefore no cusp, avoiding the defect of the usual Fermi function.
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In general,

−1

ρS(r)

dρS(r)

dr
= ρS(r)

d

sinhr/d

sinhR/d
(7)

which is approximately 1/2d at r = R, whenR � d. Therefore, it is still reasonable to
refer tod as the ‘surface thickness parameter’.

In Blankenbecler’s approach, integrals over the usual Fermi function equation (1) are
put in dimensionless form, withx = r/d, andy = R/d.

F(x − y) = 1

1+ ex−y
dF(x)

dx
≡ f (x). (8)

Take a general weight functionh(x) and consider the integral

I =
∫ ∞

0
h(x)F (x − y) dx. (9)

This we integrate by parts, writing

H(x) =
∫ x

0
h(x ′) dx ′ (10)

so that

I = −
∫ ∞

0
H(x)f (x − y) dx

= −
∫ ∞
−y
H(x ′ + y)f (x ′) dx ′. (11)

The boundary term vanishes at the origin by choice ofH , and at∞ due to the Fermi
function. Blankenbecler then made the usual approximation of extending the lower limit to
−∞, considering thaty = R/d is generally a large value. In the case of the symmetrized
Fermi function, this approximation is unnecessary, because there is a second piece of
ρS(x, y) = F(x − y) − F(x + y) to be considered. In it the sign ofy is reversed so
one has the additional contribution

J = −
∫ ∞
y

H(x ′ − y)f (x ′) dx ′

=
∫ −∞
−y

H(−x ′ − y)f (−x ′) dx ′

=
∫ −y
−∞

H(x ′ + y)f (x ′) dx ′. (12)

In the third line we have used the fact that the derivative of the Fermi function is even:
f (−x) = f (x), and we have takenh(x) to beevenso thatH(x) is odd. For this restricted
class of weight functions∫ ∞

0
h(x)ρS(x, y)dx = I − J = −

∫ ∞
−∞

H(x ′ + y)f (x ′) dx ′. (13)

Hence, Blankenbecler’s argument is exact, but it applies to the symmetrized Fermi function,
and only forevenweight functions. The trick now is to write Taylor’s theorem in the form
H(y + x ′) = ex

′DH(y), whereD is the derivative operator acting onH(y). Changing
variables toη = ex

′
gives

IS =
∫ ∞

0

ηD

(1+ η)2 dηH(y). (14)
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The integral may be evaluated formally by supposing thatD is a small number|D| < 1,
putting a branch point at the origin. The integrand then has a cut along the positive real
axis and a double pole at−1. Choosing the keyhole contour to exclude the cut, and using
Cauchy’s theorem gives

IS = πD

sinπD
H(y). (15)

This is a very compact result, which is completely equivalent to Sommerfeld’s method (see
appendix A).

More generally, when the weight functionh(x) is odd, the neglected ‘small correction
terms’ (see appendix B) due to the integralJ will be doubled in size when applied to
the symmetrized Fermi function, as compared with the usual Fermi function. However,
providing that they really are negligible, the result is still useful.

3. Applications

The simplest case is for the normalization integral, for which we choose

H(y) = y3

3
with H ′′(y) = 2y. (16)

When we expand the operator in equation (15) in powers ofD, only even powers occur.
Hence only these two derivatives contribute, giving∫ ∞

0
ρS(x)x

2 dx = R

3d3
[R2+ π2d2]. (17)

The d3 is removed as a common factor on both sides of the equation, and a 4π is added
for integration over angles, which then verifies equation (4). Similarly, using

H(y) = y5

5
H ′′(y) = 4y3 H(4)(y) = 24y (18)

we obtain the mean square radius

〈r2〉 = 1
5[3R2+ 7π2d2]. (19)

Finally, the choice

H(y) = 1

λ
sinλy H ′(y) = cosλy, . . . (20)

allows us to evaluate the form factor (here,λ = qd). Unlike the first two examples, we can
evaluate the operator in closed form, rather than by the series expansion. We continue this
in the next section.

4. Form factor

The nuclear form factor is the Fourier transform of the density distribution (2):

G(q) = 1

N

∫ ∞
0

eiq·rρS(r) d3r

= 4π

Nq

∫ ∞
0

sin(qr)ρS(r)r dr

= −4π

Nq

∂

∂q

∫ ∞
0

cos(qr)ρS(r) dr (21)
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whereN normalizesG(q = 0) = 1. We therefore wish to evaluate

K =
∫ ∞

0
cos(λx)ρS(x, y)dx (22)

wherex = r/d, y = R/d andλ = qd. Since the integrand is even, we can write

K = 1
2<
∫ ∞
−∞

eiλxρS(x) dx. (23)

The integrand has poles at the complex pointsz = ±y+ iπ . Consider, therefore, the contour
integral over a rectangle consisting of the real linez = x, the linez = x + 2iπ , and two
ends which will be allowed to recede to±∞. Using Cauchy’s theorem, we find

(1− e−2λπ )K = π i[eiλ(−y+iπ) − eiλ(y+iπ)]. (24)

Hence,

K = π

sinhπqd
sinqR (25)

where we have reverted to physical units. By taking the derivative with respect toq we
recover the result given in equation (3).

Now we apply Blankenbecler’s method to the case of equation (20) to obtain the same
result. Only even-order derivatives ofH(y) = sinλy/λ are required, and one sees that

D2kH(y) = (−)kλ2kH(y) (26)

so that the operatorD in equation (15) can be consistently replaced by iλ. This avoids
having to sum a series that would otherwise converge only for|λ| < 1. We have

K = iπλ

sin iπλ
H(y) = π

sinhπqd
sinqR (27)

in agreement with the direct evaluation in equation (25).

5. Other Bessel transforms

In considering models of quantum dots, we have had to deal with the problem of constructing
the potential inside a semiconductor, knowing its form at the exposed surface. For cases of
cylindrical symmetry the use of Fourier–Bessel expansions has some advantages over the
more conventional Poisson formula. This lead us to consider the integral

v(q) ≡
∫ ∞

0
ρS(r/d, R/d)J0(qr)r dr. (28)

As before, we use dimensionless variablesx = r/d, y = R/d andλ = qd. Then

q2v(q) = λ2
∫ ∞

0
ρS(x, y)J0(λx)x dx (29)

for which the functionH(x) = λxJ1(λx). Note that this is aneven function of x, so
Blankenbecler’s method is no longer exact. In fact, the so-called small corrections are
twice as large as for the usual Fermi function, which can be seen from equations (11) and
(12). But so long as they are negligible this has little importance (see appendix B for
more discussion). Equation (29) can be evaluated by Blankenbecler’s method as above but
requires a little more ingenuity. The result will be expressed using variablesz = λy = qR,
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and α = λπ = πqd (in this section,z is real). Using nowD = d/dz, equation (15)
becomes

q2v(q) = αD

sinαD
H(z). (30)

Expanding in powers ofα = πqd, and taking the derivatives, one finds for the first few
terms

q2v(q) = qRJ1(qR)− (πqd)
2

6
[qRJ1(qR)− J0(qR)]

+7(πqd)4

360

[
qRJ1(qR)− 2J0(qR)+ J1(qR)

qR

]
−31(πqd)6

360(42)

[
qRJ1(qR)− 3J0(qR)+ 3

qR
J1(qR)− 3

(qR)2
J2(qR)

]
+ · · · .

(31)

As noted in appendix A, this series diverges for large|α|, so one would like to know its
sum. Further study reveals that the coefficients involve functions

yp(z) ≡ (−)p+1(2p − 1)!!
Jp(z)

zp
(32)

with y0 = −J0(z) andy−1 ≡ zJ1(z). Differentiation is facilitated by the relation

y ′′p = −yp − yp+1. (33)

For example, one has

(zJ1(z))
′′ = −zJ1(z)+ J0 = −y−1− y0. (34)

At large z, the J0 term is of relative order 1/z. If we could neglect it altogether, then we
could replace the derivative operator in equation (30) byi since only even powers ofD
occur in the expansion. The result would bezJ1(z)α/ sinhα, as in equation (27).

Taking the derivatives systematically leads to the tableau

−(zJ1)
(2) = zJ1+ y0

(zJ1)
(4) = zJ1+ 2y0+ y1

−(zJ1)
(6) = zJ1+ 3y0+ 3y1+ y2

(zJ1)
(8) = zJ1+ 4y0+ 6y1+ 4y2+ y3

−(zJ1)
(10) = zJ1+ 5y0+ 10y1+ 10y2+ 5y3+ y4.

(35)

One sees that the rule for carrying out the derivatives generates coefficients according to
Pascal’s triangle, so they are the binomial coefficients`Cp. The general case is therefore

(−)`D2`zJ1(z) =
∑̀
p=0

`Cpyp−1. (36)

Following equation (A.3), withc0 = 1
2, we have

αD

sinhαD
= 2

∞∑
`=0

(−)`c2`α
2`D2`. (37)

This gives

q2v(q) = 2
∞∑
`=0

(−)`c2`α
2`
∑̀
p=0

`Cpyp−1. (38)



Symmetrized Fermi function 6531

By reversing the order of summations we have

q2v(q) = 2
∞∑
p=0

yp−1

∞∑
`=p
(−)` `Cpc2`α

2`. (39)

The coefficient ofyp−1 can be expressed in closed form if we note from equation (37)
(with D = 1) that

α2p

p!

(
∂

∂α2

)p
α

sinhα
=
∞∑
`=p
(−)`c2` `Cpα

2`. (40)

Thus,

q2v(q)− zJ1(z)
α

sinhα
=
∞∑
p=1

yp−1
1

p!
α2p ∂p

∂(α2)p

α

sinhα

=
∞∑
p=1

yp−1
1

2pp!
α2p

(
1

α

∂

∂α

)p
α

sinhα

=
∞∑
p=1

(−)p (2p − 3)!!

2pp!

Jp−1(z)

zp−1
α2p

(
1

α

∂

∂α

)p
α

sinhα
. (41)

We worked out the first few terms of this series explicitly, with the result

q2v(q) = πqd

sinhπqd

[
qRJ1(qR)+ 1

2

(
πqd

tanhπqd
− 1

)
J0(qR)

+1

8

[(
2πqd

tanhπqd
+ 1

)(
πqd

tanhπqd
− 1

)
− (πqd)2

]
J1(qR)

qR

+ 1

16

[
3

(
2(πqd)2

tanh2πqd
+ 2πqd

tanhπqd
+ 1

)(
πqd

tanhπqd
− 1

)
− 5(πqd)3

tanhπqd

]
×J2(qR)

(qR)2
+ · · ·

]
. (42)

It is seen thatα/ sinhα is a common factor, and the remaining coefficients become
polynomials inα at largeqd, so q2v(q) decreases exponentially. The coefficients ofyp
become more and more complicated but one can certainly work them out systematically.
The result is an asymptotic series inz, where the dependence onα has been summed. One
is not limited to smallqd, as for the Sommerfeld expansion, or equation (31). On the other
hand, if equation (42) is expanded in powers ofα, it reproduces exactly equation (31).

In figure 1 we show a log plot of|v(q)| versusq for the caseR = 30, d = 1. The
maxima of |v(q)| vary by 20 orders of magnitude over the range considered, and on this
scale the exact (numerical) values cannot be distinguished from expression (42). In figure 2,
we have expanded a small portion of the drawing, for 2.2 < q < 2.4. In this case, the
zeroth order approximation,zJ1(z)α/ sinhα is shown as a broken curve. Adding successive
terms from equation (42) quickly brings one to complete overlap with the full curve. The
mean square deviation between the exact and approximate curves drops by a factor of more
than 100 as each successive term is added, in figure 2.

6. Conclusion

For the symmetrized Fermi function one can evaluate many moments and integrals exactly
in closed form. This simplification should allow numerous arguments to be simplified. For
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Figure 1. A log plot of |v(q)| for the caseR = 30, d = 1.
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Figure 2. Expanded plot of a portion of figure 1. Full curve, exact; broken curve, leading term
of equation (42).

example, in a very instructive paper, Amado and collaborators [11] discussed the Fermi
function as a strong nuclear form factor for nucleon–nucleus scattering. Their approach
closely parallels our direct evaluation, and they obtainedK of equation (25) by summing
the contributions from the poles of the Fermi function as we did implicitly in equation (24).
Having a closed form would have simplified their discussion.

In two-dimensional problems such as quantum dots, one requires transforms involving
cylinder functions. We have given an example where the resulting series works well. By
extending the definition of theyp to negativep, one can do similar integrals involving any
odd power ofx timesJ0. The dependence on the ‘small’ parameterα = πqd is summed
exactly, while the dependence on the large parameterz = qR is given by an asymptotic
series, but one which reproduces the Taylor series at smallα. Calculations presented show
that very good results were obtained in our example.

We therefore expect that this method can be useful in a variety of different contexts,
wherever the Fermi function finds application.
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Appendix A. Relation to Sommerfeld’s lemma

Here we relate our results to the well known Sommerfeld lemma as outlined by
Chandrasekhar [7], which expresses the integral of equation (9) (approximately) as a series
of terms involving the functionH(y) of equation (10) and its even-order derivatives.H(y)

must be sufficiently smooth andH(0) = 0. One has∫ ∞
0
F(x − y)dH(x)

dx
dx ≈ H(y)+ 2

∑
ν=2,4,6,...

cνH
(ν)(y). (A.1)

The coefficients are (forν 6= 0)

cν = 1− 1

2ν
+ 1

3ν
− 1

4ν
+ · · · . (A.2)

The first few of these sums are

c2 = π2

12
c4 = 7π4

720
c6 = 31π6

30 240
· · · . (A.3)

For largeν the coefficients approach unity from below.
Comparing with Blankenbecler’s formula, equation (15), we see that the coefficientcν

of equation (A.2) can be computed as half the coefficient ofDν in the Taylor expansion of
πD/ sinπD. This is undoubtedly the easiest way to generate them. Through this relation
they are closely related to the Bernoulli numbers. The general result may be found in
Gradshtein and Ryzhik [12]:

πx

sinhπx
= 1+ 2

∞∑
n=1

B2n(2
2n−1− 1)

(πx)2n

(2n)!
(A.4)

from which

c2n = (−)n+1B2n(2
2n−1− 1)

(π)2n

(2n)!
. (A.5)

For reference,

B2 = 1

6
B4 = −1

30
B6 = 1

42
· · · . (A.6)

Appendix B. Error term

If one deals with the unsymmetrized Fermi function, then the integralI of equation (9)
lacks the second piece ofρS(x, y) = F(x − y) − F(x + y). This induces an error (see
equation (13))

J =
∫ ∞

0

h(x)

1+ ex+y
dx

= −
∑
p=1

(−)pe−py
∫ ∞

0
e−pxh(x) dx. (B.1)
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In the particular case at hand,h(x) = xJ0(λx), the integral is known [12]∫ ∞
0
xe−pxJ0(λx) dx = p

(p2+ λ2)3/2
. (B.2)

Hence,

J = −
∑
p=1

(−)pe−py
p

(p2+ λ2)3/2

= −
∑
p=1

(−)pe−pR/d
p

(p2+ q2d2)3/2
. (B.3)

Since this is an alternating series of positive terms, the sum is less than the first term, and
greater than the difference of the first two.

e−R/d
1

(1+ q2d2)3/2
> J > e−R/d

1

(1+ q2d2)3/2

(
1− e−R/d

2(1+ q2d2)3/2

(4+ q2d2)3/2

)
. (B.4)

The magnitude of the error is set by e−R/d , and whenR � d this is bound to be small.
However, as a function ofqd, it decreases only as the inverse third power, so asymptotically
this will overtake the expansion given in equation (42). For the values adopted in figure 1,
this will only show up at much larger values ofqd.
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